"Can scientific discovery really be automated?
I believe it can, using an approach that we have known about for centuries. The answer to this question can be found in the work of Sir Francis Bacon, the 17th-century English philosopher and a key progenitor of modern science.
The first reiterations of the scientific method can be traced back many centuries earlier to Muslim thinkers such as Ibn al-Haytham, who emphasised both empiricism and experimentation. However, it was Bacon who first formalised the scientific method and made it a subject of study. In his book Novum Organum (1620), he proposed a model for discovery that is still known as the Baconian method. He argued against syllogistic logic for scientific synthesis, which he considered to be unreliable. Instead, he proposed an approach in which relevant observations about a specific phenomenon are systematically collected, tabulated and objectively analysed using inductive logic to generate generalisable ideas. In his view, truth could be uncovered only when the mind is free from incomplete (and hence false) axioms.
The Baconian method attempted to remove logical bias from the process of observation and conceptualisation, by delineating the steps of scientific synthesis and optimising each one separately. Bacon’s vision was to leverage a community of observers to collect vast amounts of information about nature and tabulate it into a central record accessible to inductive analysis. In Novum Organum, he wrote: ‘Empiricists are like ants; they accumulate and use. Rationalists spin webs like spiders. The best method is that of the bee; it is somewhere in between, taking existing material and using it.’
The Baconian method is rarely used today. It proved too laborious and extravagantly expensive; its technological applications were unclear. However, at the time the formalisation of a scientific method marked a revolutionary advance. Before it, science was metaphysical, accessible only to a few learned men, mostly of noble birth. By rejecting the authority of the ancient Greeks and delineating the steps of discovery, Bacon created a blueprint that would allow anyone, regardless of background, to become a scientist.
Bacon’s insights also revealed an important hidden truth: the discovery process is inherently algorithmic. It is the outcome of a finite number of steps that are repeated until a meaningful result is uncovered. Bacon explicitly used the word ‘machine’ in describing his method. His scientific algorithm has three essential components: first, observations have to be collected and integrated into the total corpus of knowledge. Second, the new observations are used to generate new hypotheses. Third, the hypotheses are tested through carefully designed experiments.
If science is algorithmic, then it must have the potential for automation. This futuristic dream has eluded information and computer scientists for decades, in large part because the three main steps of scientific discovery occupy different planes. Observation is sensual; hypothesis-generation is mental; and experimentation is mechanical. Automating the scientific process will require the effective incorporation of machines in each step, and in all three feeding into each other without friction. Nobody has yet figured out how to do that."
Rise of Modern Science:
https://www.thegreatcoursesdaily.com/birth-modern-science/